skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Joshua D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Bimetallic gold–palladium particles were originally proposed as catalysts with tunable reaction rates. Following the development of synthesis routes that offer better control on the morphology and composition of the particles, novel optical sensing functionalities were more recently proposed. Since temperature is a fundamental parameter that interplays with every other proposed application, we studied the light-to-heat conversion ability of Au/Pd bimetallic nanoparticles with a regular octapodal shape. Both compositional (Au-to-Pd ratio) and structural (diagonal tip-to-tip distance and tip width) characteristics were screened and found to be essential control parameters to promote light absorption and efficient conversion into heat. Electromagnetic simulations reveal that the Pd content, and specifically its distribution inside the branched particle geometry, has a profound impact on the optical properties and is an essential criterion for efficient heating. Notably, the optical and photothermal responses are shown to remain stable throughout extended illumination, with no noticeable structural changes to the branched nanocrystals due to heat generation. 
    more » « less
  3. Abstract Branched plasmonic nanocrystals (NCs) have attracted much attention due to electric field enhancements at their tips. Seeded growth provides routes to NCs with defined branching patterns and, in turn, near‐field distributions with defined symmetries. Here, a systematic analysis was undertaken in which seeds containing different distributions of planar defects were used to grow branched NCs in order to understand how their distributions direct the branching. Characterization of the products by multimode electron tomography and analysis of the NC morphologies at different overgrowth stages indicate that the branching patterns are directed by the seed defects, with the emergence of branches from the seed faces consistent with minimizing volumetric strain energy at the expense of surface energy. These results contrast with growth of branched NCs from single‐crystalline seeds and provide a new platform for the synthesis of symmetrically branched plasmonic NCs. 
    more » « less